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Abstract

Everyday, people flexibly perform different categorizations of common faces, objects and scenes. Intuition and scattered
evidence suggest that these categorizations require the use of different visual information from the input. However, there is no
unifying method, based on the categorization performance of subjects, that can isolate the information used. To this end, we
developed Bubbles, a general technique that can assign the credit of human categorization performance to specific visual
information. To illustrate the technique, we applied Bubbles on three categorization tasks (gender, expressive or not and identity)
on the same set of faces, with human and ideal observers to compare the features they used. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Even casual observers would have no problem to
classify the two faces of Fig. 1. They would say that the
face in Fig. 1a is a woman, with a happy expression,
who is called ‘Anne,’ if this was her identity. In con-
trast, Fig. 1b is a man, called ‘Simon,’ with a neutral
expression, and who is comparatively older. These dif-
ferent judgements of similar images reveal the impres-
sive versatility of face categorization mechanisms (e.g.
Etcoff & Maggee, 1992; Calder, Young, Perrett, Etcoff,
& Rowland, 1996; Schyns & Oliva, 1999). That is,
observers can make subtle judgments of gender, iden-
tity, age and expression, based on the same visual
input.

Versatile categorizations are not restricted to faces.
People can typically classify a given object as a car, at
the basic-level, a vehicle at the superordinate level, and
as a Porsche at the subordinate level, when they know
this expert categorization (Rosch, Mervis, Gray, John-
son, & Boyes-Braem, 1976). In a related vein, one scene
can be an outdoor scene, a city, or New York, depend-

ing on the level of category precision (Oliva & Schyns,
2000). Flexible categorizations of objects and scenes at
different levels of abstraction have become central to
modern theories of categorization and recognition
(Tarr & Bülthoff, 1995; Murphy & Lassaline, 1997;
Cutzu & Edelman, 1998; Schyns, 1998; Gauthier, Tarr,
Moylan, Anderson, Skudlarski, & Gore, 2000; Gosselin
& Schyns, 2001).

Such flexible categorizations tend to require different
visual information from the same input. For example,
the information presented in Fig. 2 (EXNEX and hu-
man observer) is sufficient to determine whether the
underlying face is expressive or not. However, could
you as confidently determine its gender? Fig. 2 (GEN-
DER and human observer) reveals supplementary face
information that should improve a gender judgement
(i.e. male).

Even though we might have many good intuitions
(but fewer data) about the information required for
different visual categorizations, there is a need in recog-
nition studies for a principled method that reveals the
stimulus information that is diagnostic of a given cate-
gorization task. To this end, we introduce Bubbles, a
general technique that can assign the credit of a catego-
rization performance to specific visual information.
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We will illustrate several properties of Bubbles with
three experiments on face stimuli. Starting from one set
of male and female faces displaying two expressions
(neutral and happy), in experiment 1 Bubbles will iso-
late the spatial location of the visual cues that are
responsible for the gender and expressive categoriza-
tions (Fig. 2, human observer, is the outcome of this
experiment). The second experiment will investigate the
more challenging task of face identity. It will also
illustrate the generality of Bubbles by localizing
diganostic cues in a larger dimensional (3D) space (2D
spatial location x spatial scales). In these two experi-
ments, we will contrast the information humans used
with the optimal information available to resolve the
tasks. Experiment 3 will seek to show, in a typical
recognition experiment, that the identity cues extracted
in experiment 2 have a general validity.

From the outset, it is important to emphasize that
the aim of this paper is to illustrate the fundamental
principles of Bubbles in the context of simple, but

nevertheless challenging experiments, not to resolve
face gender, expression, and identity in optimal condi-
tions of ecological validity. Moreover, we used faces
because they are good stimuli for our illustrations, but
the principles of Bubbles should generalize to other
objects and scenes.

2. Experiment 1

2.1. Method

All experiments reported in this paper ran on a
Macintosh G4 using a program written with the Psy-
chophysics Toolbox for Matlab (Brainard, 1997; Pelli,
1997). Participants were five paid University of Glas-
gow students, with normal, or corrected to normal
vision. In a within-subjects design, each participant was
sequentially submitted to two independent tasks (male
vs. female, GENDER; and expressive or not, EXNEX)
on the same stimulus set. Order of task changed ran-
domly across participants.

Stimuli were computed from the 32 greyscale faces of
Schyns and Oliva (1999) (eight males, eight females,
each displaying either a neutral or happy expression,
with normalized hairstyle, global orientation and light-
ing, see Fig. 1). Each face was partly revealed by a
mid-grey mask punctured by a number of randomly
located Gaussian windows (henceforth called ‘bubbles’)
with standard deviation of 0.22° of visual angle, see
Fig. 3c for examples. We chose bubbles with a Gaus-
sian shape because it is smooth and symmetrical (see
Marr, 1982).

During the experiment, the number of bubbles per
image was automatically adjusted, using an adaptive
procedure, to reveal just enough face information to
maintain a 75% correct categorization criterion (Bub-
bles is a self-calibrating technique). The size of the
bubbles and the self-calibration are important aspects
of the technique that we will discuss in the results
section.

In a given trial, one sparse face computed as de-
scribed above appeared on the screen. To respond,
subjects pressed labelled computer-keyboard keys. It is
important to stress that subjects were not under any
time pressure to respond and so could freely explore
each stimulus. The experiment comprised a total of 512
trials (16 presentations of the 32 faces). A chinrest was
used to maintain a constant viewing distance of 100 cm.
Stimuli subtended 5.72×5.72° of visual angle on the
screen.

2.2. Results

An average of 15 and 23 bubbles (S.D.=4 and 9),
respectively, in the EXNEX and the GENDER condi-

Fig. 1. This figure shows two of the faces used in experiment 1. Note
that hairstyle, pose and lighting were normalized.
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Fig. 2. This figure illustrates diagnostic face information for judging whether a face is expressive or not (EXNEX), or its gender (GENDER). The
pictures are the outcome of Bubbles in the EXNEX and GENDER categorizations of experiment 1 on human (left column) and ideal observers
(right column).

Fig. 3. This figure illustrates Bubbles in experiment 1 for the EXNEX task. In (a), the bubbles leading to a correct categorization are added
together to form the CorrectPlane (the rightmost greyscale picture). In (b), all bubbles (those leading to a correct and incorrect categorizations)
are added to form TotalPlane (the rightmost greyscale picture). In (c), examples of experimental stimuli as revealed by the bubbles of (b). It is
illustrative to judge whether each sparse stimulus is expressive or not. ProportionPlane (d) is the division of CorrectPlane with TotalPlane. Note
the whiter mouth area (the greyscale has been renormalized to facilitate interpretation). See Fig. 2 for the outcome of experiment 1.

tions, were required for subjects to reach the perfor-
mance criteria. A correct response meant that the bub-
bles (or a subset of them) revealed enough face
information to correctly categorize the sparse face.

When this happened, we added the mask made of
bubbles to CorrectPlane. Across trials, CorrectPlane
sums all the masks leading to successful categorizations
(see Fig. 3a and c). We also added the successful masks
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to TotalPlane. Across trials, TotalPlane sums all of the
masks, thus summing both the masks, leading to a
successful categorization and all the masks leading to a
miscategorization (see Fig. 3b).

Remember that the location of all bubbles in a mask
changes randomly across trials. They randomly reveal a
portion of the tested space (here, the image plane) to an
observer who must then use this information for a
categorization. Hence, the interaction between the ran-
dom bubbles and the observer can be depicted as a
random search for diagnostic task information. With
enough trials, a random search is exhaustive and all the
search space is explored.

For each subject, we derived a ProportionPlane by
dividing CorrectPlane by TotalPlane. We then com-
puted the mean ProportionPlane of GENDER and
EXNEX by averaging across subjects. The averaged
ProportionPlane is a measure of the relative importance
of the regions of the 2D image for the task at hand. If
no region had any special status, ProportionPlane
would be homogeneously grey. That is, the probability
that the information revealed by any bubble led to a
correct categorization would be 0.75, the performance
criterion. In contrast, the more diagnostic regions
should be significantly above the criterion (i.e. whiter).
Fig. 3d illustrates the ProportionPlane of EXNEX.
Note the salient region corresponding to the mouth.

To derive the statistical significance of diagnostic
regions, we construct around the mean of the Propor-
tionPlane a confidence interval for each proportion
(P!0.05). The DiagnosticPlane is a task-specific mask
that removes all information below the confidence in-
terval. The DiagnosticPlanes in Fig. 2 were smoothed
out with a Gaussian bubble identical to the experimen-
tal bubble.

This simple experiment has demonstrated that two
distinct categorizations of the same faces do indeed
require different visual information. Fig. 2, Human
observer, reveals that the mouth is the only diagnostic
region of EXNEX, however, the eyes and the center of
the mouth are used in GENDER.

At this stage, it is worth expanding on the dynamics
of the technique. We stated earlier that Bubbles was a
self-calibrating technique. In fact, Bubbles is a gradient-
descent algorithm (Hertz, Krogh, & Palmer, 1991) that
constantly adjusts the number of bubbles (i.e. the total
face area revealed) to minimize an error term — the
difference between subject and target performance. This
self-calibration has one important side-effect with re-
gards the size of bubbles. Simply put, if subjects require
information represented at a scale larger than that of a
bubble, the technique will recalibrate and automatically
increase the number of bubbles. Consequently, the den-
sity of bubbles will increase, they will start to form
clusters at larger scales, subjects’ performance will im-
prove, and this will in turn stabilize the number of

bubbles. This self-calibration implies that Bubbles is
relatively insensitive to the size of the bubbles. For
example, all the images of Fig. 2 illustrate that the
diagnostic masks are much larger than the size of the
small bubbles.

2.3. Human !ersus ideal obser!er

In Bubbles, the observer determines the informative
subset of a randomly, and sparsely sampled search
space. To highlight this unique property, we here con-
trast human and ideal observers (Tjan, Braje, Legge, &
Kersten, 1987). The ideal observer will provide a bench-
mark of the information available in the stimulus set to
resolve each task. In the tasks of experiment 1, the ideal
will capture all the regions of the image that have
highest local variance between the considered categories
(male vs. female, and neutral vs. expressive). This ideal
considers the stimuli as images (not faces composed of
eyes, a nose and a mouth, as humans do) and it might
not necessarily be sensitive to the regions that humans
find most useful (the diagnostic regions), but rather to
the information that is mostly available in the data set
for the task at hand.

We constructed a different ideal observer for
EXNEX and GENDER and submitted them to Bub-
bles, using the same parameters as those humans used
in experiment 1. Specifically, the number of bubbles
was held constant (equal to the average numbers hu-
mans required in EXNEX and GENDER, respec-
tively), and we added to the faces a varying percentage
of Gaussian white noise to maintain performance at
75% correct. In a winner-take-all algorithm (Hertz et
al., 1991), the ideal matched the information revealed
by the bubbles of the input with the same bubbles
applied to the 32 memorized face pictures. The gender
or expression of the best match was the categorization
response. CorrectPlanes, TotalPlanes, ProportionPlanes
and DiagnosticPlanes were computed as explained
before.

Fig. 2 shows that the DiagnosticPlanes of the ideal
and human observers are only partially correlated (r=
.75 and .55 for the EXNEX and GENDER Diagnostic-
Planes, respectively). For GENDER, human and ideal
observers use similar information (e.g., the eyes and the
central upper part of the mouth). However, the ideal
also uses supplementary information from the silhou-
ette of the head. Similarly, for EXNEX, the human and
ideal observers both use information around the
mouth. However, the ideal also uses lateralized infor-
mation from the eyes.

In sum, the ideal and human observers revealed that
the EXNEX and GENDER tasks require different
information from the same face set. The partial correla-
tion between human and ideal use of information
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demonstrates the unique property of Bubbles: it is a
human, partially efficient, not a formal, optimally effi-
cient, feature extraction algorithm.

3. Experiment 2

Experiment 2 applies Bubbles to the more challeng-
ing task of face identity. We want to demonstrate that
the technique is versatile and can be applied to a more
complex, abstract ‘image generation’ space. Bubbles
will here search a 3D space comprising the two dimen-
sions of the image plane and the third abstract dimen-
sion of spatial scales.

It is now well established that the identity of faces is
represented at multiple spatial scales (see Morrison &
Schyns, 2001, for a review). However, research on face
recognition has so far lacked a technique that identifies
the specific aspects of identity that humans locally
represent at different scales. Experiment 2 applies Bub-
bles to a simple face identification task.

3.1. Method

This application of Bubbles is very similar to that of
experiment 1. Participants were twenty paid University
of Glasgow students, with normal, or corrected to
normal vision. Stimuli were computed from ten of the

Fig. 4. This figure illustrates the application of Bubbles in experiment 2. Pictures in (b) represent five different scales of (a); (c) illustrate the
bubbles applied to each scale; (d) are the revealed information of (b) by the bubbles of (c). Note that on this trial there is no revealed information
at the fifth scale. By integrating the pictures in (d) we obtain (e), a stimulus subjects actually saw.
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greyscale faces (five males and five females all display-
ing a neutral expression) used in experiment 1 (see Fig.
4a). Prior to experimentation, all subjects learned to
criterion (perfect identification of all faces twice in a
row) the name attached to each face from printed
pictures with corresponding name at the bottom.

To compute the experimental stimuli, we decom-
posed the original faces into six bands of spatial fre-
quencies of one octave each — at 2.81, 5.62, 11.25,
22.5, 45 and 90 cycles per face, from coarse to fine
(computations were made with the Matlab Pyramid
Toolbox, Simoncelli, 1999). The coarsest band served
as a constant background, as a prior study revealed
that it does not contain face identification information
(see Fig. 4b). We applied different Gaussian windows
to each one of the five spatial frequency bands, to
normalize to 3 the number of cycles per face that any
bubble revealed (standard deviations of bubbles were
2.15, 1.08, 0.54, 0.27 and 0.13° of visual angle, from
coarse to fine scales, see Fig. 4c). Pilot testing revealed
that three cycles per bubble was the smallest integer
choice leading to naturalistic sparse faces.

The multiplication of scale-specific face information
(Fig. 4b) with its respective bubbles (Fig. 4c) produced
the information revealed at each scale (Fig. 4d). To
generate an experimental stimulus, we simply added the
information revealed at each scale (Fig. 4e). As in
experiment 1, the total subspace revealed by the bub-
bles was self-calibrated to maintain identification of the
sparse faces at a 75% correct criterion.

In a given trial, one sparse face appeared on the
screen. Subjects identified it by pressing the keyboard-
key tagged with the appropriate name. To allow for
complete inspection of the revealed information, sub-
jects were under no time pressure to respond. The
experiment comprised two sessions of 500 trials each
(50 presentations of the ten faces), but we only used the
data from the last 500 trials, when subjects were famil-
iar with the faces and experimental procedure. A chin-
rest was used to maintain subjects at a constant viewing
distance (of 100 cm). Stimuli subtended 5.72×5.72° of
visual angle on the screen.

3.2. Results

An average of 47 bubbles (S.D.=16) were needed
for subjects to reach the performance criterion. The
correct identification of a sparse stimulus indicates that
the bubbles used in its construction (or a subset of
them) revealed enough information about the face for
its identification. In experiment 2, this information can
reside at different scales of the same stimulus. To
compute CorrectPlane, we must memorize the locations
of the bubbles at each scale (i.e. all those of Fig. 4c). To
this end, we recorded an independent CorrectPlane for

each scale — henceforth called CorrectPlane(scale),
with scale=1 to 5. A similar argument applies to
TotalPlane — henceforth, TotalPlane(scale), with
scale=1 to 5. Whenever a stimulus was correctly iden-
tified, its bubbles were added to their respective Cor-
rectPlane(scale) and TotalPlane(scale). When the input
was misidentified, bubbles were only added to
TotalPlane(scale).

To derive diagnostic information, we computed a
different ProportionPlane for each scale by dividing
CorrectPlane(scale) by TotalPlane(scale), for each sub-
ject. We then averaged ProportionPlane(scale) across
subjects. The result enables a much finer analysis of
information than that of experiment 1: Proportion-
Plane(scale) weighs the importance of the regions of
each scale for face identification. To derive the Diag-
nosticPlane(scale), we constructed a confidence interval
(P!0.05) around the mean of each Proportion-
Plane(scale), for each proportion. Fig. 5c reveals the
diagnostic regions of face identification at different
scales.

It is interesting to step back from the computations
to observe the interaction between spatial scales and
information use. To do this, we multiply the scale
information of Fig. 5b with the diagnostic masks of
Fig. 5c to derive Fig. 5d. At the finest scale, the eyes
and a corner of the mouth appear to stand out (see the
leftmost picture in Fig. 5d). At the next to finest scale,
the diagnostic information is a mask comprising the
eyes, the nose and the mouth. The next scale is consis-
tent with the information that face recognition re-
searchers would call a configural representation of the
face. Together, the eyes, the nose, the mouth and the
chin appear to form a meaningful recognition unit, but
in isolation, these features do not diagnose the identity
of the face (Sergent, 1986; Gauthier & Tarr, 1997;
Tanaka & Sengco, 1997; Schyns & Oliva, 1999). At the
next meaningful scale, the left side of the face silhouette
is used. It is worth pointing out that the lighting was
always coming from the right side of the faces. There-
fore, the left sides of the faces were more shaded and
thus more informative. This is also apparent in the
third diagnostic plane.

To visualize the diagnostic information of a face
identification task, we can now reconstruct the ‘effec-
tive face.’ The effective face (Fig. 5e) is the sum of the
face information revealed by the diagnostic filters in
Fig. 5d.

3.3. Human !ersus ideal performance

To compare the human versus ideal features of face
identity, we ran an ideal observer similar to that in
experiment 1. The ideal was exposed to faces punctured
with bubbled masks at different scales (the number of



F. Gosselin, P.G. Schyns / Vision Research 41 (2001) 2261–2271 2267

Fig. 5. This figure illustrates the outcome of Bubbles in experiment 2 with human observers. Pictures in (b) represent five scales of (a); (c) represent
the statistically significant diagnostic regions at each spatial scale of the face (see discussion in text); (d) multiply (b) with (c). The bottom picture
is the effective (or diagnostic) stimulus: a depiction of the information used to identify faces in experiment 2.

bubbles per scale was normalized to the average num-
ber humans needed) and correlated the sparse face with
the pictures in memory. The best match constituted the
categorization response. Performance was maintained
at 75% correct by adding a varying percentage of
Gaussian white noise to the input face. CorrectPlanes,
TotalPlanes, ProportionPlanes and DiagnosticPlanes
were computed as explained before. Fig. 6 illustrates
the ideal diagnostic masks.

As in experiment 1, the diagnostic masks of the
human observers were only partially correlated with
those of the ideal (r=1, 0.48, 0.12, 0.01 and 0.05, from
coarse to fine scales), revealing again the specific human
contribution to the feature extraction process.

4. Experiment 3

Bubbles is a technique that presents sparse stimuli to
determine the diagnostic visual information of catego-
rization tasks. This information takes the form of diag-
nostic masks whose general validity we now turn to.
Two separate issues must be addressed. The first one
stems from the way that sparse stimuli reveal visual
information (i.e. via bubbles). Subjects could adopt an
atypical recognition strategy elicited by the presence of
local information. In a related vein, stimuli were dis-
played on the screen for an unlimited time, and this
might also have elicited atypical strategies (when com-
pared to typical recognition experiments that restrict
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presentation time). Consequently, the information re-
vealed by the diagnostic masks might not be used in
more typical situations of face recognition (i.e. when
face information is complete, not sparse, and briefly,
not indefinitely presented).

To address this issue, experiment 3 was set up as a
typical recognition task. Subjects had to identify faces
presented on the screen for brief, varying durations.
Each face could come in one of three possible ver-
sions: original, filtered with diagnostic masks, and
filtered with nondiagnostic masks (Fig. 7; nondiagnos-
tic masks are simply the complement of the diagnostic
masks). The diagnostic masks would be validated if

recognition performance was similar for the original
faces and for those filtered with diagnostic masks, and
was hindered for faces filtered with nondiagnostic
masks.

The second issue of validation concerns the re-
stricted number of faces used in experiment 2 to derive
the masks. With few faces, the masks might be id-
iosyncratic to this stimulus set, instead of capturing a
more generic information about face identity. If the
masks were idiosyncratic then they would not transfer
to a new set of faces. That is, they would not reveal
the identity information of the new faces. To address
this issue, we also ran the recognition task described

Fig. 6. This figure illustrates the outcome of Bubbles in experiment 2 with an ideal observer. Pictures in (b) represent five scales of (a); (c) represent
the statistically significant available regions at each spatial scale of the face; (d) multiply (b) with (c). The bottom picture is the available stimulus:
a depiction of the information that is most informative to identify faces in experiment 2.
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Fig. 7. This figure illustrates the three conditions of experiment 3: DIAGNOSTIC is a filtered version of the ORIGINAL with the diagnostic
masks derived in experiment 2. NONDIAGNOSTIC is the same face filtered with the complement of the diagnostic masks (1−Diagnostic-
Plane(scale), for scale=1 to 5). Average energy per scale is identical in all conditions of a face.

above on a new set of ten faces (from Gold, Bennett, &
Sekuler, 1999a,b). If the masks revealed generic identity
information, we would expect a transfer of recognition
performance. That is, we expect recognition perfor-
mance to be similar with the ‘new,’ and the ‘old’ face
sets, although the diagnostic masks were derived from
only the ‘old’ face set.

4.1. Method

Participants were 20 paid University of Glasgow
students, with normal, or corrected to normal vision.
They were randomly split between the conditions of
OLD and NEW face sets.

For each face set, we computed three versions of
each greyscale face: original (ORIGINAL), filtered with
diagnostic masks (DIAGNOSTIC), and filtered with
non-diagnostic masks (NONDIAGNOSTIC, see Fig.
7). The computation of the DIAGNOSTIC faces was
already presented in Fig. 5. By definition of a diagnos-
tic mask, its complement (1 — DiagnosticPlane(scale),
for scale=1 to 5) reveals the less diagnostic informa-
tion. NONDIAGNOSTIC faces were filtered with these
nondiagnostic masks. For each face and scale, we then
normalized contrast energy across conditions of ORIG-
INAL, DIAGNOSTIC and NONDIAGNOSTIC.

In a given trial, one face (either ORIGINAL, DIAG-
NOSTIC or NONDIAGNOSTIC) appeared on the
screen for a varying duration (either 13, 27, 53, 107 or
213 ms). This was immediately followed by a bit noise
mask that remained on the screen until subjects re-
sponded. Subjects identified the face by pressing the
keyboard-key tagged with the appropriate name. In
total, there were 450 such trials (ten faces× three types
of stimuli×five durations× three repetitions=450 tri-
als). A chinrest was used to maintain subjects at a
constant viewing distance of 100 cm. Stimuli subtended
5.72×5.72° of visual angle on the screen.

4.2. Results

To measure recognition performance, we computed
the average percent correct identification per subject for
each of the five presentation times (13, 27, 53, 107 and
213 ms), in the three conditions of face stimulus
(ORIGINAL, DIAGNOSTIC and NONDIAGNOS-
TIC). This was done for the two conditions of face sets
(OLD and NEW). The recognition curves are plotted in
Fig. 8, bestfitted with Weibull distributions (smallest
R2=0.88).

As expected, for both the OLD and NEW face sets,
performance with the ORIGINAL and DIAGNOSTIC
faces evolved similarly, whereas performance was hin-
dered with NONDIAGNOSTIC faces. Remember that
the first goal of experiment 3 was to use a typical time
constrained face identification experiment to validate
the diagnostic masks which were extracted in condi-
tions of sparse stimulation and unlimited stimulus pre-
sentation. The similarity of performance between
ORIGINAL and DIAGNOSTIC in contrast to NON-
DIAGNOSTIC faces validates that the information
revealed by the diagnostic masks does drive the process
of recognizing full faces under time pressure. When this
information was removed in the NONDIAGNOSTIC
condition, subjects’ performance was significantly hin-
dered across all durations. Note that DIAGNOSTIC
faces were consistently better recognized than the
ORIGINAL faces. This was expected because the en-
ergy normalization reduced the strength of the DIAG-
NOSTIC subspace of the ORIGINAL image. If people
must use the diagnostic information, the ORIGINAL
stimulus must then be less effective than the DIAG-
NOSTIC stimulus.

A comparison between the three curves for OLD and
NEW face sets reveals that the evolution of perfor-
mance was very similar, but scaled down for the NEW
set. This probably occurred because the NEW faces
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were more similar (subjects took more time to learn
them). The comparison between OLD and NEW sug-
gests that the masks captured generic information
about face identity, not only the idiosyncrasies of the
OLD face set.

In sum, experiment 3 was designed to validate the
generality of the diagnostic masks derived by Bubbles
in conditions of a restricted stimulus set, sparsely pre-
sented, for an unlimited duration. In a recognition
experiment where full faces were presented under time
pressure, we found similar performance for the original
faces and those filtered by the diagnostic masks. More-
over, we found a degradation of performance with
nondiagnostically filtered faces. This pattern was repli-
cated on a new set of faces. Together, the evidence

suggests that the masks derived from Bubbles captured
generic information for face identification.

5. Concluding remarks

Experiments 1 and 2 have demonstrated that Bubbles
can be used to isolate the diagnostic information of face
recognition tasks. Experiment 3 validated that the
masks of experiment 2 captured generic identity infor-
mation. Bubbles applied to human and ideal observers
produced different diagnostic masks, and so it is advis-
able to use a method based on human performance to
derive the features humans use. Note that the principles
of Bubbles are not limited to faces but are also applica-
ble to other object and scene categorizations. The tech-
nique is a human search for diagnostic features in any
specified n-dimensional image generation space, even if
the space is abstract.
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